

## Features

- Combination of a 5.5 digit digital multimeter and $30-\mathrm{W}$ power supply in a single unit
- 10 DMM measurements, including 4-wire miliohm measurement
- 8 built-in math functions
- OVP and OCP for load protection
- Ramp and scan function, and built in square-wave output
- USB 2.0 interface and GPIB connectivity
- Kensington lock slot for security

Convenient two instruments in one box

Looking for a one-box source-and-measure device to meet your measurement needs? The Agilent U3606B Multimeter | DC Power supply is a full-featured 5.5 digit digital multimeter (DMM) that comes with a built-in $30-\mathrm{W}$ power supply offering a compact footprint enabling you to get work done faster and easier. Being capable of powering up the DUT while measures Voltage and Current simultaneously, it enables users to perform two test functions within the same unit.

The U3606B is carefully thought out for your convenience and ease when operating. The convenient two instruments in a box concept is space and cost efficient, as less space is needed to accommodate one device instead of two. Also the U3606B is lightweight enabling easy portability — lighter than both DMM and power supply combined, making it ideal for various industry such as education, commercial electronics, semiconductors, sensors and research and development.

## Sweep function (Ramp and scan)

Ramp and scan functions are mainly used to simplify device characterization for multilevel DC bias testing such as DC motor testing, transistor gain test, relay control and margin tests. Users have the choice to either manually perform quick verification testing through front panel or control operations remotely using simplified programming codes. Both functions are conveniently configurable via front panel to sweep up to 100 steps for scan and 10,000 steps for ramp, programmable up to $105 \%$ full scale.

## Added Safety Features With OVP, OCP and Physical lock security

Safety features in test instruments are always an added advantage. It does not only protect users from exposure to current, but also the additional costs incurred to their investment (DUT). Our U3606B is integrated with an array of security features such as over-voltage (OVP) and over-current (OCP) protection to mitigate these risks. Additionally, security feature such as Kensington lock slot strategically located at the rear of the unit secures your instrument from the risk of theft or misplacement when left unattended.

## Square wave output

Square wave output is a unique function for many applications such as pulse-with modulation (PWM) output, adjustable voltage control, and synchronous clock. Users are able to check and calibrate flowmeter displays, tachometers, LED,
sensors, oscilloscopes, frequency converters, frequency transmitters and other frequency input devices. The U3606B's square wave output provides selectable frequencies up to 4.8 kHz with variable duty cycles and amplitudes.

More flexibility, more accuracy
Multiple connectivity options such as GPIB port and USB 2.0 provides more flexibility and robust connection between PC and U3606B Multimeter | DC Power supply. Users are able to connect the device directly to the PC host and work seamlessly with the Agilent Connectivity software or controlled remotely via standard SCPI commands. With two instruments in a single test box, less cable is required for troubleshooting providing better maintenance and wire management - essential for rack mount usage. U3606B also comes with 4-wire milliohm resistance measurement providing more accurate readings for device characterization as compared to the conventional 2 -wire resistance measurement.

## Scan signal



Ramp signal


## Take a closer look



Full-featured $51 / 2$ digit DMM

- 120,000 counts resolution
- Low error rate of up to $0.025 \%$ basic DCV accuracy
- 10 measurement functions (DCV, ACV, DCI, ACI, 2- and 4-wire resistance, frequency, continuity, diode, capacitance)
- 8 built-in math functions
- 4-wire milliohm measurement with $0.001 \mathrm{~m} \Omega$ resolution
- Multimeter operation keys

Figure 1. Front panel of the U3606B.
Physical security
Kensington lock slot helps secure your instrument and prevents theft or misplacement


Accurate results
Built-in remote sensing helps you ensure accurate supply at load end

Hassle-free integration into existing systems

- Standard USB-TMC488.2 and GPIB connectivity
- SCPI compliance for easy code migration

Figure 2. Rear panel of the U3606B.

## Digital multimeter specifications

Specification assumptions:

- Specifications stated are after 60 minutes of warm-up and for $51 / 2$-digit resolution
- One-year calibration cycle, with calibration temperature of $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
- Operating temperature: 18 to $28^{\circ} \mathrm{C}\left(64.4\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Accuracy is expressed as $\pm$ (\% of reading $+\%$ of range)
- Temperature coefficient: Add [0.1 x (the applicable accuracy) / $\left.{ }^{\circ} \mathrm{C}\right]$ for 0 to $18^{\circ} \mathrm{C}$ and 28 to $55^{\circ} \mathrm{C}$
- Relative humidity (RH) up to $80 \%$ at $30^{\circ} \mathrm{C}$, proportional to $50 \%$ for 30 to $55^{\circ} \mathrm{C}$


## DC specifications

Table 1. DC accuracy specifications $\pm$ (\% of reading $+\%$ of range)

| Function | Range ${ }^{1}$ | Resolution | Test current or burden voltage | $\begin{aligned} & 24 \text { hours }^{2} \\ & 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 90 \text { days } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{aligned}$ | Temperature coefficient 0 to $18^{\circ} \mathrm{C}$ 28 to $55^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC voltage | 19.9999 mV | $0.1 \mu \mathrm{~V}$ | - | $0.012+0.04$ | $0.015+0.04$ | $0.025+0.04$ | $0.0015+0.0040$ |
|  | 100.000 mV | $1 \mu \mathrm{~V}$ | - | $0.012+0.008$ | $0.015+0.008$ | $0.025+0.008$ | $0.0015+0.0008$ |
|  | 1.00000 V | $10 \mu \mathrm{~V}$ | - | $0.012+0.005$ | $0.015+0.005$ | $0.025+0.005$ | $0.0010+0.0005$ |
|  | 10.0000 V | $100 \mu \mathrm{~V}$ | - | $0.012+0.005$ | $0.015+0.005$ | $0.025+0.005$ | $0.0020+0.0005$ |
|  | 100.000 V | 1 mV | - | $0.012+0.005$ | $0.015+0.005$ | $0.025+0.005$ | $0.0015+0.0005$ |
|  | 1000.00 V | 10 mV | - | $0.012+0.005$ | $0.015+0.005$ | $0.025+0.005$ | $0.0015+0.0005$ |
| DC current ${ }^{3}$ | 10.0000 mA | $0.1 \mu \mathrm{~A}$ | < 0.2 V | $0.05+0.015$ | $0.05+0.015$ | $0.05+0.015$ | $0.0060+0.0005$ |
|  | 100.000 mA | $1 \mu \mathrm{~A}$ | $<0.2 \mathrm{~V}$ | $0.05+0.005$ | $0.05+0.005$ | $0.05+0.005$ | $0.0060+0.0005$ |
|  | 1.00000 A | $10 \mu \mathrm{~A}$ | $<0.3 \mathrm{~V}$ | $0.05+0.007$ | $0.05+0.007$ | $0.15+0.007$ | $0.0100+0.0005$ |
|  | 3.0000 A | $100 \mu \mathrm{~A}$ | $<0.7 \mathrm{~V}$ | $0.05+0.007$ | $0.05+0.007$ | $0.15+0.007$ | $0.0150+0.0010$ |
| Resistance ${ }^{4}$ | $100.000 \Omega$ | $1 \mathrm{~m} \Omega$ | 0.83 mA | $0.04+0.008$ | $0.04+0.008$ | $0.05+0.008$ | $0.0050+0.0005$ |
|  | $1000.00 \Omega$ | $10 \mathrm{~m} \Omega$ | 0.83 mA | $0.04+0.005$ | $0.04+0.005$ | $0.05+0.005$ | $0.0050+0.0005$ |
|  | $10.0000 \mathrm{k} \Omega$ | $100 \mathrm{~m} \Omega$ | $100 \mu \mathrm{~A}$ | $0.04+0.005$ | $0.04+0.005$ | $0.05+0.005$ | $0.0050+0.0005$ |
|  | $100.000 \mathrm{k} \Omega$ | $1 \Omega$ | $10 \mu \mathrm{~A}$ | $0.04+0.005$ | $0.04+0.005$ | $0.05+0.005$ | $0.0050+0.0005$ |
|  | $1.00000 \mathrm{M} \Omega$ | $10 \Omega$ | 900 nA | $0.05+0.005$ | $0.05+0.005$ | $0.06+0.005$ | $0.0050+0.0005$ |
|  | $10.0000 \mathrm{M} \Omega$ | $100 \Omega$ | 205 nA | $0.20+0.005$ | $0.20+0.005$ | $0.25+0.005$ | $0.0150+0.0005$ |
|  | $100.000 \mathrm{M} \Omega$ | $1 \mathrm{k} \Omega$ | $205 \mathrm{nA} \mathrm{\|\mid}$ | $1.60+0.005$ | $1.60+0.005$ | $2.00+0.005$ | $0.1500+0.0005$ |
|  |  |  | $10 \mathrm{M} \Omega$ |  |  |  |  |

1. $20 \%$ over range on all ranges, except for $20 \mathrm{mV} V_{d c^{\prime}} 1000 \mathrm{~V}_{d c^{\prime}}$ and $3 A_{d c}$ range.
2. Relative to calibration standards.
3. Any current measurement greater than 500 mA will have a temporary thermo-effect. If you wish to measure a lower current or offset current immediately after a high current measurement, ensure that the U3606B has cooled down.
4. Specifications stated are for 2 -wire resistance measurements using Null math operation. Without Null, add a $0.2 \Omega$ error. To eliminate the noise interference, which might be induced due to the test leads, a shielded test cable is recommended for measuring resistance above $100 \mathrm{k} \Omega$.

## Digital multimeter specifications (continued)

## DC specifications (continued)

Table 1. DC accuracy specifications $\pm$ ( $\%$ of reading $+\%$ of range $)$

| Function | Range ${ }^{1}$ | Resolution | Test current or burden voltage | $\begin{aligned} & 24 \text { hours }^{2} \\ & 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 90 \text { days } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{aligned}$ | Temperature coefficient 0 to $18^{\circ} \mathrm{C}$ 28 to $55^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lowresistance ${ }^{5}$ | $100 \mathrm{~m} \Omega$ | 0.01/0.001 m $\Omega$ | 1,0000 A | - | - | $0.25+0.05$ | - |
|  | $1000 \mathrm{~m} \Omega$ | 0.1/0.01 m $\Omega$ | 100.00 mA | - | - | $0.25+0.03$ | - |
|  | $10 \Omega$ | $1 / 0.1 \mathrm{~m} \Omega$ | 100.00 mA | - | - | $0.09+0.03$ | - |
|  | $100 \Omega$ | $10 / 1 \mathrm{~m} \Omega$ | 10.00 mA | - | - | $0.09+0.03$ | - |
|  | $1000 \Omega$ | 0.1/10 m | 10.00 mA | - | - | $0.09+0.03$ | - |
| Continuity | $1.0000 \mathrm{k} \Omega$ | $100 \mathrm{~m} \Omega$ | 0.83 mA | $0.04+0.005$ | $0.04+0.005$ | $0.05+0.005$ | $0.0050+0.0005$ |
| Diode ${ }^{6}$ | 1.0000 V | 0.0001 V | 0.83 mA | $0.04+0.005$ | $0.04+0.005$ | $0.05+0.005$ | $0.0050+0.0005$ |
| Capacitance ${ }^{7}$ | 1.000 nF | 0.001 nF | $0.75 \mu \mathrm{~A}$ current source | - | - | $2.0+0.8$ | $0.02+0.001$ |
|  | 10.00 nF | 0.01 nF | $0.75 \mu \mathrm{~A}$ | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | 100.00 nF | 0.1 nF | $8.3 \mu \mathrm{~A}$ | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | $1.000 \mu \mathrm{~F}$ | $0.001 \mu \mathrm{~F}$ | $83 \mu \mathrm{~A}$ | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | $10.00 \mu \mathrm{~F}$ | $0.01 \mu \mathrm{~F}$ | $83 \mu \mathrm{~A}$ | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | $100.0 \mu \mathrm{~F}$ | $0.1 \mu \mathrm{~F}$ | $83 \mu \mathrm{~A}$ | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | $1000 \mu \mathrm{~F}$ | $1 \mu \mathrm{~F}$ | 0.83 mA | - | - | $1.0+0.5$ | $0.02+0.001$ |
|  | $10000 \mu \mathrm{~F}$ | $1 \mu \mathrm{~F}$ | 0.83 mA | - | - | $2.0+0.5$ | $0.02+0.001$ |

1. $20 \%$ over-range on all ranges, except for $1000 \mathrm{~V}_{\text {dc }}$ range.
2. Relative to calibration standards.
3. Any current measurement greater than 500 mA will have a temporary thermo-effect. If you wish to measure a lower current or offset current immediately after a high-current measurement, ensure that the U3606A has cooled down.
4. Specifications stated are for 2 -wire resistance measurements using Null math operation. Without Null, add a $0.2 \Omega$ error. To eliminate noise interference which may be induced by the test leads, a shielded test cable is recommended for resistances above $100 \mathrm{k} \Omega$.
5. Specifications stated are for 4-wire low-resistance measurements. The test current is sent from the FORCE terminals and the resistance is measured by the SENSE terminals.
The contact strength may influence the measuring result significantly. Ensure that the connection of the test point is firm to avoid resistance due to contact leads.
The accuracy is specified after source compensation due to environment temperature changes. Initiate the compensation by exiting and entering the Lo- $\Omega$ function or by disabling and enabling the output.
The measuring current will be reduced automatically when the product of the test current and resistance exceed 7.5 V . Refer to the test current and resistance as shown below:

| Test current | Maximum test resistance | Test current | Maximum test resistance |
| :--- | :--- | :--- | :--- |
| 4 mA | $<1200 \Omega$ | 8 mA | $<938 \Omega$ |
| 5 mA | $<1200 \Omega$ | 9 mA | $<834 \Omega$ |
| 6 mA | $<1200 \Omega$ | 10 mA | $<750 \Omega$ |
| 7 mA | $<1072 \Omega$ | - | - |

6. Specifications stated are for the voltage measured at the input terminals only. The test current ( 1 mA ) is typical. Variation in the current source will create some variation in the voltage dropped across a diode junction.
7. Specifications stated are for open test lead measurements and film capacitor or better using the Null math operation.

For the total measurement accuracy, add the probe error. The contact strength will significantly influence the measuring result. Ensure proper contact at the test point you want to measure.

## Digital multimeter specifications (continued)

## AC specifications

Table 2. AC accuracy specifications $\pm$ (\% of reading $+\%$ of range)

| Function | Range ${ }^{1}$ | Frequency range | 1 year $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ | Temperature coefficient 0 to $18{ }^{\circ} \mathrm{C}$ 28 to $55^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| True rms AC voltage ${ }^{2}$ | $100.000 \mathrm{mV}{ }^{3}$ | 20 to 45 Hz | $1+0.1$ | $0.02+0.02$ |
|  |  | 45 Hz to 10 kHz | $0.2+0.1$ | $0.02+0.02$ |
|  |  | 10 to 30 kHz | $1.5+0.3$ | $0.02+0.02$ |
|  |  | 30 to $100 \mathrm{kHz}^{4}$ | $5+0.3$ | $0.02+0.02$ |
|  | $\begin{aligned} & 1.00000 \mathrm{~V} \\ & \text { to } 750.00 \mathrm{~V}^{5,6} \end{aligned}$ | 20 to $45 \mathrm{~Hz}^{7}$ | $1+0.1$ | $0.02+0.02$ |
|  |  | 45 Hz to 10 kHz | $0.2+0.1$ | $0.02+0.02$ |
|  |  | 10 to 30 kHz | $1+0.1$ | $0.02+0.02$ |
|  |  | 30 to $100 \mathrm{kHz}^{4,8}$ | $3+0.2$ | $0.02+0.02$ |
| True rms AC current | 10.0000 mA | 20 to 45 Hz | $1.5+0.1^{10}$ | $0.02+0.02$ |
|  | to $3.0000 \mathrm{~A}^{9}$ | 45 Hz to 1 kHz | $0.5+0.1$ | $0.02+0.02$ |
|  |  | 1 to 10 kHz | $2+0.2^{11}$ | $0.02+0.02$ |

1. $20 \%$ over range on all ranges, except for $750 \mathrm{~V}_{\mathrm{ac}}$ range.
2. Specifications stated are for input signals greater than $5 \%$ of range except for the 100 mV range. No square-wave output are to be used as the signal output.
3. 100 mV range: specifications stated are for input signals greater than $10 \%$ of range.
4. Additional error $0.003 \%$ of full scale per kHz to be added when signal input changes less than $10 \%$ of range.
5. Available ranges: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 750.00 \mathrm{~V}$.
6. For 750 V range: 847 V is readable.
7. For 750 V range: the accuracy is specified for input less than $200 \mathrm{~V}_{\text {rms }}$
8. For 750 V range: the accuracy is specified for input less than $300 \mathrm{~V}_{\text {rms }}$
9. Available ranges: $10.0000 \mathrm{~mA}, 100.000 \mathrm{~mA}, 1.00000 \mathrm{~A}, 3.0000 \mathrm{~A}$.
10. For 3 A range: the accuracy is specified for input less than 3 A.
11. For 1 A and 3 A ranges: the accuracy is specified for frequencies less than 5 kHz .

The specification of the $A C+D C$ measurement will be the sum of the $A C$ and $D C$ accuracy. The frequency range will be from 50 Hz for $51 / 2$ digit resolution and 225 Hz for $41 / 2$ digit resolution.

## Digital multimeter specifications (continued)

Frequency specifications
Table 3. Frequency accuracy specifications $\pm$ (\% of reading $+\%$ of range)
$\left.\begin{array}{lllll} & & & \text { Temperature coefficient } \\ \text { Function } & \text { Range } & \text { Frequency range } & 1 \text { year } & 23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \\ & \text { Voltage path: } & <2 \mathrm{~Hz} & 0 \text { to } 18{ }^{\circ} \mathrm{C}\end{array}\right)$

1. For 100 mV and 1 V ranges, the measurable frequency is up to 1 MHz at 0.5 V signal. Minimum input frequency is 1 Hz .

All frequency counters are susceptible to errors when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.

Table 4. Frequency sensitivity for voltage measurement

|  | Minimum sensitivity (rms sine wave) |  |  |
| :--- | :--- | :--- | :--- |
| Input range ${ }^{1}$ | 20 Hz to 100 kHz | 100 to 300 kHz | 300 kHz to 1 MHz |
| 100 mV | 50 mV | 50 mV | 0.5 V |
| 1.0 V | 100 mV | 120 mV | -5 V |
| 10 V | 1 V | 1.2 V | - |
| 100 V | 10 V | 12 V | - |
| 750 V | 100 V | - |  |
| 1. Maximum input for specified accuracy $=10 \times$ range or $750 \mathrm{~V}_{\text {rms }}$ or $1000 \mathrm{~V}_{\text {dc. }}$ |  |  |  |

Table 5. Frequency sensitivity for current measurement

|  | Minimum sensitivity (rms sine wave) |
| :--- | :--- |
| Input range | 20 Hz to 10 kHz |
| 10 mA | 1 mA |
| 100 mA | 10 mA |
| 1.000 A | 100 mA |
| 3 A | 300 mA |

## Digital multimeter specifications (continued)

Duty cycle and pulse width specifications
Table 6. Duty cycle and pulse width resolution and accuracy

| Function | Range | Resolution | Accuracy of full scale |
| :--- | :--- | :--- | :--- |
| Duty cycle | $100.000 \%^{1}$ | $0.001 \%$ | $0.3 \%+0.2 \%$ per kHz |
| Pulse width | $199.999 \mathrm{~ms}^{2}$ | 0.001 ms | Duty cycle/frequency |
|  | $1999.99 \mathrm{~ms}^{2}$ | 0.01 ms | Duty cycle/frequency |

1. The range is from $\{10 \mu s \times$ frequency $\times 100 \%\}$ to $\{[1-(10 \mu s \times$ frequency $)] \times 100 \%\}$. For example, a 1 kHz signal can be measured from $1 \%$ to 99\%.
2. The positive or negative pulse width must be greater than $10 \mu \mathrm{~s}$. The range of the pulse width is determined by the frequency of the signal.

## Operating specifications

Table 7. Reading speed (typical) ${ }^{1}$

| Function | Rate | Reading speed ${ }^{2}$ (readings/second) | Reading speed over USB ${ }^{3}$ (readings/second) | Reading speed over GPIB ${ }^{4}$ (readings/second) |
| :---: | :---: | :---: | :---: | :---: |
| DC voltage(10 V) | Slow ( $51 / 2$ digits) | 17 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 70 | 23 | 22 |
| $\begin{aligned} & \text { DC current } \\ & (1 \mathrm{~A}) \end{aligned}$ | Slow ( $51 / 2$ digits) | 17 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 70 | 26 | 24 |
| AC voltage ( 10 V at 1 kHz ) | Slow ( $51 / 2$ digits) | 17 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 70 | 23 | 22 |
| AC current ( 1 A at 1 kHz ) | Slow ( $51 / 2$ digits) | 17 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 70 | 26 | 24 |
| AC + DC voltage ( 10 V at 1 kHz ) | Slow ( $51 / 2$ digits) | 4 | 2.9 | 2.9 |
|  | Fast ( $41 / 2$ digits) | 17 | 10 | 10 |
| AC + DC current <br> ( 1 A at 1 kHz ) | Slow ( $51 / 2$ digits) | 4 | 2.9 | 2.9 |
|  | Fast ( $41 / 2$ digits) | 17 | 10 | 10 |
| Resistance ( $100 \mathrm{k} \Omega$ ) | Slow ( $51 / 2$ digits) | 17 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 70 | 22 | 22 |
| $\begin{aligned} & \text { Lo- } \Omega \\ & (1 \mathrm{k} \Omega) \end{aligned}$ | Slow ( $51 / 2$ digits) | 17 | 0.8 | 0.8 |
|  | Fast ( $41 / 2$ digits) | 70 | 0.8 | 0.8 |
| Capacitance ( $10 \mu \mathrm{~F}$ ) | Slow/Fast ( 3112 digits) | 5 | 1.4 | 1.4 |
| Diode $(1 \mathrm{~V})$ | Slow/Fast (41⁄2 digits) | 70 | 26 | 23 |
| Frequency (voltage path at $10 \mathrm{~V}, 1 \mathrm{kHz}$ ) | Slow ( $51 / 2$ digits) | 9 | 8 | 8 |
|  | Fast ( $41 / 2$ digits) | 9 | 8 | 8 |
| Frequency (current path at 1 A, 1 kHz) | Slow ( $51 / 2$ digit) | 9 | 8 | 8 |
|  | Fast ( $411 / 2$ digit) | 9 | 8 | 8 |

1. Based on an average of 500 readings.
2. Reading rate of the $A / D$ converter.
3. Number of measurements per second that can be read through USB using SCPI "READ?" command.
4. Number of measurements per second that can be read through GPIB using SCPI "READ?" command.

## Digital multimeter specifications (continued)

## Supplemental characteristics

| DC voltage | Sigma Delta A-to-D converter |
| :--- | :--- |
| Measurement method | $1000 \mathrm{~V}_{\mathrm{dc}}$ on all ranges |
| Maximum input voltage | $10 \mathrm{M} \Omega \pm 2 \%$ range (typical) in parallel with capacitance $<120 \mathrm{pF}$ |
| Input impedance | $1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges |
| Input protection | Approximately 0.15 s when the displayed reading reaches $99.9 \%$ DC value of the tested <br> input signal at the same range |
| Response time |  |


| DC current |  |
| :---: | :---: |
| Measurement method | Sigma Delta A-to-D converter |
| Maximum input current | 10 mA to $3.0 \mathrm{~A} \mathrm{DC}{ }^{1}$ |
| Burden voltage and shunt resistance | - < $0.2 \mathrm{~V}, 10 \Omega$ for 10 mA range <br> - $<0.2 \mathrm{~V}, 1 \Omega$ for 100 mA range <br> - $<0.3 \mathrm{~V}, 0.05 \Omega$ for 1 A range <br> - $<0.7 \mathrm{~V}, 0.05 \Omega$ for 3 A range |
| Input protection | Protected with $3.15 \mathrm{~A} / 500 \mathrm{~V}$, FF fuse |
| Response time | Approximately 0.15 s when the displayed reading reaches $99.9 \% \mathrm{DC}$ value of the tested input signal at the same range |

1. Any current measurement greater than 500 mA will have a temporary thermo-effect. If you wish to measure a smaller current or offset current measurement immediately after a high current measurement, ensure that the U3606B is cooled down.

AC voltage

| Measurement method | AC coupled true rms |
| :--- | :--- |
| Maximum input voltage | $750 \mathrm{~V}_{\mathrm{rms}} / 1200 \mathrm{~V}_{\text {peak }} / 3 \times 10^{7} \mathrm{~V}$ - Hz of product |
| Input impedance | $1 \mathrm{M} \Omega \pm 2 \%$ range (typical) in parallel with capacitance $<120 \mathrm{pF}$ |
| Input protection | $750 \mathrm{~V}_{\mathrm{rms}}$ on all ranges |
| Crest factor | For $<5: 1$ errors included. Limited by the peak input and 100 kHz bandwidth. Maximum 3.0 at <br> full scale. |
| Peak input | $300 \%$ of range. Limited by maximum input. |
| Response time | Approximately 2.5 s when the displayed reading reaches $99.9 \% \mathrm{AC}$ rms value of the tested <br> input signal at the same range. |
| Overload ranging | Will select higher range if peak input overload is detected during auto range. Overload is <br> reported in manual ranging. |

## Digital multimeter specifications (continued)

## Supplemental characteristics (continued)

| AC current |  |
| :---: | :---: |
| Measurement method | AC coupled true rms |
| Maximum input current | 10 mA to 3.0 A DC or AC $\mathrm{rms}^{1}$ |
| Burden voltage and shunt resistance | - $<0.2 \mathrm{~V}, 10 \Omega$ for 10 mA range <br> - <0.2 V, $1 \Omega$ for 100 mA range <br> - < $0.3 \mathrm{~V}, 0.05 \Omega$ for 1 A range <br> - $<0.7 \mathrm{~V}, 0.05 \Omega$ for 3 A range |
| Input protection | Protected with $3.15 \mathrm{~A} / 500 \mathrm{~V}$, FF fuse |
| Crest factor | For < 5:1 errors included. Limited by the peak input and 100 kHz bandwidth. Maximum 3.0 at full scale. |
| Peak input | $300 \%$ of range. Limited by maximum input. |
| Response time | Approximately 2.5 s when the displayed reading reaches $99.9 \%$ AC rms value of the tested input signal at the same range. |

1. Any current measurement greater than 500 mA will have a temporary thermo-effect. If you wish to measure a smaller current or offset current measurement immediately after a high current measurement, ensure that the U3606B is cooled down.

| Resistance | Two-wire, open-circuit voltage limited to $<5 \mathrm{~V}$ |
| :--- | :--- |
| Measurement method | $<+5.0 \mathrm{~V}_{\mathrm{dc}}$ |
| Open circuit voltage | $1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit |
| Input protection | Approximately 0.15 seconds for $1 \mathrm{M} \Omega$ and ranges below $1 \mathrm{M} \Omega$ |
| Response time |  |
|  | Four-wire, the test current is sent from the FORCE terminals and resistance measured at the <br> SENSE terminals. |
| Low-resistance | - FORCE terminals: Protected with a $3.15 \mathrm{~A} / 250 \mathrm{~V}$ FF fuse <br> Measurement method <br> Input protection |
| Opense terminals: $1000 \mathrm{~V}_{\text {rms }}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit |  |


| Continuity | $0.83 \mathrm{~mA} \pm 0.2 \%$ constant current source |
| :--- | :--- |
| Measurement method | $<+5.0 \mathrm{~V}_{\mathrm{dc}}$ |
| Open circuit voltage | Continuous beeping when reading is less than the threshold resistance of $10 \Omega$ at $1.0 \mathrm{k} \Omega$ <br> range |
| Audible tone | $1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit |
| Input protection |  |

## Digital multimeter specifications (continued)

## Supplemental characteristics (continued)

| Diode |  |
| :---: | :---: |
| Measurement method | $0.83 \mathrm{~mA} \pm 0.2 \%$ constant current source |
| Open circuit voltage | $<+5.0 \mathrm{~V}_{\mathrm{dc}}$ |
| Audible tone | - Continuous beep when level is below +50 mV DC <br> - Single tone for normal forward-biased diode or semiconductor junction where $0.3 \mathrm{~V} \leq$ reading $\leq 0.8 \mathrm{~V}$ |
| Input protection | $1000 \mathrm{~V}_{\text {rms }}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit |
| Capacitance |  |
| Measurement method | Computed from constant current source charge time, typical 0.2 to 1.4 V signal level |
| Maximum voltage at full scale | - For 1 nF to $10 \mu \mathrm{~F}$ range: $<1.5 \mathrm{~V}$ <br> - For $100 \mu \mathrm{~F}$ to $10000 \mu \mathrm{~F}:<0.33 \mathrm{~V}$ |
| Input protection | $1000 \mathrm{~V}_{\text {rms }}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit |
| Response time | Approximately 1 s for $100 \mu \mathrm{~F}$ and ranges below $100 \mu \mathrm{~F}$ |
| Charge and discharge voltage | $5 \mathrm{~V}_{\mathrm{pp}}$ (approximately from +3 V to -2 V ) |
| Frequency |  |
| Measurement method | Reciprocal counting technique |
| Signal level | $10 \%$ of range to full scale input on all ranges |
| Input protection | - Voltage path: $750 \mathrm{~V}_{\mathrm{rms}}$ on all ranges <br> - Current path: Protected with $3.15 \mathrm{~A} / 500 \mathrm{~V}, \mathrm{FF}$ fuse |
| Maximum display counts (excluding frequency) |  |
| $51 / 2$ digits | 120,000 |
| $41 / 2$ digits | 12,000 |
| Measurement noise rejection |  |
| CMRR (Common Mode Rejection Ratio) for $1 \mathrm{k} \Omega$ unbalanced in LO lead | - DC: 140 dB <br> - AC: 70 dB |
| NMRR (Normal Mode Rejection Ratio) | $60 \mathrm{~Hz} \pm 0.1 \%$ <br> - 5122 digit: 65 dB <br> - $41 / 2$ digit: 0 dB <br> $50 \mathrm{~Hz} \pm 0.1 \%$ <br> - $51 / 2$ digit: 55 dB <br> - $41 / 2$ digit: 0 dB |

## DC power supply specifications

## Safety considerations

The U3606B is a safety class I instrument, which means it has a protective earth terminal. The terminal must be connected to an earth ground through a power source with a 3 -wire ground receptacle.

The DC power supply performance specifications are listed in the following pages. Specifications are warranted in the temperature range of 0 to $55^{\circ} \mathrm{C}$ with a fix resistive load. Supplemental characteristics - which are not warranted, but are descriptions of performance - are determined either by design or testing.

Specification assumptions:

- Specifications stated are after 60-minutes of warm-up and with no load
- Operating temperature at 18 to $28^{\circ} \mathrm{C}\left(64.4\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Accuracy is expressed as $\pm$ (\% of output + offset) at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
- Temperature coefficient: Add [0.1 $\times$ (the specified accuracy) $\left./{ }^{\circ} \mathrm{C}\right]$ for 0 to $18^{\circ} \mathrm{C}$ and 28 to $55^{\circ} \mathrm{C}$
- Relative humidity (RH) up to $80 \%$ at $30^{\circ} \mathrm{C}$, proportional to $50 \%$ for 30 to $55^{\circ} \mathrm{C}$


## Performance specifications

Table 8. DC power supply performance specifications

| Parameter |  | Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1S2 | S1 | S1m | S2 | S2m |
| Output ratings | Voltage | AUTO | $30 \mathrm{~V} / 1 \mathrm{~A}$ | $100 \mathrm{~mA} / 30 \mathrm{~V}$ | $8 \mathrm{~V} / 3 \mathrm{~A}$ | $1000 \mathrm{mV} / 3 \mathrm{~A}$ |
| Programming accuracy <br> 1 year (@ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ), <br> $\pm(\%$ of output + offset) |  | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 0.5 \mathrm{mV} \end{aligned}$ |
|  | Current | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 0.15 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ |
| Readback accuracy 1 year over GPIB and USB or | Voltage | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 5 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 0.05 \%+ \\ & 0.5 \mathrm{mV} \end{aligned}$ |
| front panel with respect to actual output (@ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ), $\pm(\%$ of output + offset) | Current | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 0.15 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0.15 \%+ \\ & 3 \mathrm{~mA} \end{aligned}$ |
| Ripple and noise With outputs ungrounded, or | Normal mode voltage | $<2 \mathrm{mV} \mathrm{rms}^{\text {j }}$ < 30 mV pp |  |  |  |  |
| with either output terminal grounded, 20 Hz to 1 MHz | Normal mode current | $<1 \mathrm{~mA}_{\text {rms }}$ |  |  |  |  |

(continued on next page)

## DC power supply specifications (continued)

## Performance specifications (continued)

Table 8. DC power supply performance specifications

| Parameter |  | Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1S2 | S1 | S1m | S2 | S2m |
| Output ratings |  | AUTO | $30 \mathrm{~V} / 1 \mathrm{~A}$ | $100 \mathrm{~mA} / 30 \mathrm{~V}$ | $8 \mathrm{~V} / 3 \mathrm{~A}$ | $1000 \mathrm{mV} / 3 \mathrm{~A}$ |
| Front terminal load regulation ${ }^{1}$ $\pm(\%$ of output + offset $)$ | Voltage | $\begin{aligned} & <3 \mathrm{mV}+ \\ & (6 \mathrm{mV} / \mathrm{A}) \end{aligned}$ | $\begin{aligned} & <3 \mathrm{mV}+ \\ & (6 \mathrm{mV} / \mathrm{A}) \end{aligned}$ | $\begin{aligned} & <3 \mathrm{mV}+ \\ & (6 \mathrm{mV} / \mathrm{A}) \end{aligned}$ | $\begin{aligned} & <3 \mathrm{mV}+ \\ & (6 \mathrm{mV} / \mathrm{A}) \end{aligned}$ | $\begin{aligned} & <0.3 \mathrm{mV}+ \\ & (6 \mathrm{mV} / \mathrm{A}) \end{aligned}$ |
|  | Current | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.03 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ |
| Rear terminal load regulation $\pm(\%$ of output + offset $)$ | Voltage | $\begin{aligned} & <0.01 \%+ \\ & 3 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & <0.01 \%+ \\ & 3 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & <0.01 \%+ \\ & 3 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & <0.01 \%+ \\ & 3 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & <0.01 \%+ \\ & 0.3 \mathrm{mV} \end{aligned}$ |
|  | Current | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.03 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & <0.03 \%+ \\ & 0.3 \mathrm{~mA} \end{aligned}$ |
| Line regulation | Voltage | 3 mV typical | 3 mV typical | 3 mV typical | 3 mV typical | 0.3 mV typical |
|  | Current | 1.5 mA typical | 1.5 mA typical | 0.15 mA typical | 1.5 mA typical | 1.5 mA typical |
| Programming resolution | Voltage | 1 mV | 1 mV | 1 mV | 1 mV | 0.1 mV |
|  | Current | 0.1 mA | 0.1 mA | 0.01 mA | 0.1 mA | 0.1 mA |
| Readback resolution | Voltage | 1 mV | 1 mV | 1 mV | 1 mV | 0.1 mV |
|  | Current | 0.1 mA | 0.1 mA | 0.01 mA | 0.1 mA | 0.1 mA |
| Front panel resolution | Voltage | 1 mV | 1 mV | 1 mV | 1 mV | 0.1 mV |
|  | Current | 0.1 mA | 0.1 mA | 0.01 mA | 0.1 mA | 0.1 mA |
| Transient response time |  | Less than $100 \mu \mathrm{~s}$ for output to recover to within 15 mV following a change in output current from full load to half load or vice versa |  |  |  |  |
| Command processing time |  | Average time for output voltage to begin to change after receipt of digital data when instrument is connected directly to the USB or GPIB is less than 100 ms |  |  |  |  |
| Over-voltage protection (for CC mode) |  | Accuracy: $0.5 \%+0.5 \mathrm{~V}$ <br> Activation time ${ }^{2}:<2 \mathrm{~ms}$ |  |  |  |  |
| Over-current protection (for CV mode) |  | Accuracy: $0.5 \%+0.05 \mathrm{~A}$ <br> Activation time ${ }^{2}:<2 \mathrm{~ms}$ |  |  |  |  |

1. The terminal sense is related to the resistance of the contacts or leads, and proportional to the load condition.
2. Average time for the detection of OVP or OCP condition. The output will be dropped down and set to standby within 20 ms .

## DC power supply specifications (continued)

## Supplemental characteristics

Table 9. DC power supply supplemental characteristics

| Parameter |  | Characteristics |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1 | S1m | S2 | S2m |
| Output ratings |  | $30 \mathrm{~V} / 1 \mathrm{~A}$ | $100 \mathrm{~mA} / 30 \mathrm{~V}$ | $8 \mathrm{~V} / 3 \mathrm{~A}$ | $1000 \mathrm{mV} / 3 \mathrm{~A}$ |
| Maximum output programming range | Voltage | CV: 31.500 V OC: 1.05 A OCP: 1.1 A | - | $\begin{aligned} & \text { CV: } 8.4 \mathrm{~V} \\ & \text { OC: } 3.15 \mathrm{~A} \\ & \text { OCP: } 3.3 \mathrm{~A} \end{aligned}$ | CV: 1050 mV OC: 3.15 A OCP: 3.3 A |
|  | Current | CC: 1.05 A OV: 31.500 V OCP: 33.000 V | CC: 105 mA OV: 31.500 V OCP: 33.000 V | $\begin{aligned} & \text { CC: } 3.15 \mathrm{~A} \\ & \text { OV: } 8.4 \mathrm{~V} \\ & \text { OCP: } 8.8 \mathrm{~V} \end{aligned}$ | - |
| Temperature coefficient $\pm$ (\% of output + offset) maximum change in output/readback per ${ }^{\circ} \mathrm{C}$ for 0 to $18^{\circ} \mathrm{C} / 28$ to $55^{\circ} \mathrm{C}$ | Voltage | $0.005 \%+0.5 \mathrm{mV}$ | - | $0.005 \%+0.5 \mathrm{mV}$ | $0.005 \%+0.05 \mathrm{mV}$ |
|  | Current | 0.02\% +1 mA | 0.02\% + 0.01 mA | 0.02\% +1 mA | - |
| Remote sensing capability | Voltage drop per load lead | Up to 0.75 V |  |  |  |
|  | Load regulation | $<0.01 \%+3 \mathrm{mV}$ | $<0.01 \%+3 \mathrm{mV}$ | < $0.01 \%+3 \mathrm{mV}$ | $<0.01 \%+0.3 \mathrm{mV}$ |
|  | Maximum load voltage | Subtract voltage drop per load lead |  |  |  |
| Voltage programming speed (excludes command processing time) | Full load | Up: 50 ms Down: 50 ms |  |  |  |
|  | No load | Up: 50 ms Down: 50 ms |  |  |  |

## DC power supply specifications (continued)

## Square-wave output characteristics

Table 10. Square-wave output characteristics

| Parameter | Range | Characteristics |
| :---: | :---: | :---: |
| Amplitude accuracy $\pm$ (offset) | S1 (30 V/1 A) and S1S2 (AUTO) | 0.2 V |
|  | S2 (8 V/3 A) and S1S2 (AUTO) | 0.2 V |
| Amplitude resolution | S1 ( $30 \mathrm{~V} / 1 \mathrm{~A}$ ) | 1 mV |
|  | S2 (8V/3 A) | 1 mV |
| Frequency accuracy <br> $\pm$ (\% of frequency setting + offset) | (27 steps ${ }^{1}$ ) | $0.005 \%+0.01 \mathrm{~Hz}$ |
| Frequency resolution | - | 0.01 Hz |
| Duty cycle accuracy <br> $\pm$ (\% of duty cycle setting) | (256 steps: $0.39 \%$ to $99.60 \%$ ) | $0.4 \%^{2,3}$ |
| Duty cycle resolution | - | 0.39\% ${ }^{3}$ |
| Pulse width accuracy ${ }^{3,4}$ $\pm$ (offset) | (256 steps: 1/frequency) | Duty cycle/frequency |
| Pulse width resolution | - | Range/256 |

1. Available frequencies: $0.5,2,5,6,10,15,25,30,40,50,60,75,80,100,120,150,200,240,300,400,480,600,800,1200,1600,2400,4800$ (Hz). If range S1S2 (AUTO) is selected, available frequencies range is 10 to 4800 Hz , with fixed $50 \%$ duty cycle:

| Output | Range | Adjustable step | Accuracy |
| :--- | :--- | :--- | :--- |
| Frequency | 10.0 Hz to 4800.0 Hz | $10 \mathrm{~Hz} / 100 \mathrm{~Hz} / 1000 \mathrm{~Hz}$ <br> around | $0.005 \%+0.1 \mathrm{~Hz}$ <br> (according to the display of frequency indication) |

2. For frequency signals greater than 100 Hz , an additional $0.1 \%$ per 100 Hz is added. The accuracy of the duty cycle should be calculated as:

$$
\text { Accuracy }=\left(0.4 \%+\left[\left(\frac{\text { frequency }}{100}-1\right) \times 0.1 \%\right]\right)
$$

Calculation example: Frequency setting $=4800 \mathrm{~Hz}$, Duty cycle setting $=50 \%$

$$
\text { Characteristic of duty cycle }= \pm 0.4 \%+\left[\left(\frac{4800}{100}-1\right) \times 0.1 \%\right]= \pm \frac{5.1}{100}= \pm 5.1 \%
$$

The duty cycle accuracy (for frequency setting 4800 Hz ) is calculated as $50 \% \pm 5.1 \%$.
3. Characteristic applies when the positive or negative pulse width is greater than $50 \mu$ s.
4. For frequency signals greater than 100 Hz , an additional $0.1 \%$ per 100 Hz is added. The accuracy of the pulse width should be calculated as:

$$
\text { Accuracy }=\frac{\left(0.4 \%+\left[\left(\frac{\text { frequency }}{100}-1\right) \times 0.1 \%\right]\right)}{\text { frequency }}
$$

Calculation example: Frequency setting $=4800 \mathrm{~Hz}$, Duty cycle setting $=50 \%$

$$
\text { Characteristic of pulse width } \left.= \pm\left(\left(0.4 \%+\left[\left(\frac{4800}{100}-1\right) \times 0.1 \%\right]\right) \times \frac{1}{4800}\right)= \pm \frac{5.1}{100} \times \frac{1}{4800}\right)= \pm 10.625 \mu \mathrm{~s}
$$

The pulse width accuracy (for frequency setting 4800 Hz and duty cycle setting $50 \%$ ) is calculated as $0.1042 \mathrm{~ms} \pm 10.625 \mu \mathrm{~s}$.
The rise and fall time are $25 \mu$ s typically between $10 \%$ and $90 \%$ of the signal amplitude.
The additional load regulation is $0.15 \mathrm{~V} / \mathrm{A}$.

## DC power supply specifications (continued)

Sweep characteristics
Table 11. Scan output characteristics

| Scan | Constant voltage |  |  | Constant current |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | S1 | S2 | S2m | S1 | S1m | S2 |
| Maximum amplitude ${ }^{1}$ | 31.500 V | 8.400 V | 1050.0 mV | 1.0500 A | 105.00 mA | 3.1500 A |
| Step | 1 step to 100 steps |  |  | 1 step to 100 steps |  |  |
| Dwelling time | 1 s to 99 s |  |  | 1 s to 99 s |  |  |

1. Amplitude start position is fixed at 0 (V or A) by default.

Table 12. Ramp output characteristics

| Ramp | Constant voltage |  |  | Constant current |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | S1 | S2 | S2m | S1 | S1m | S2 |
| Maximum amplitude ${ }^{1}$ | 31.500 V | 8.400 V | 1050.0 mV | 1.0500 A | 105.00 mA | 3.1500 A |
| Step | 1 step to 10000 steps |  |  | 1 step to 10000 steps |  |  |
| Dwelling time | 100 ms (typical) per step |  |  | 100 ms (typical) per step |  |  |

## Product characteristics

| Power supply | - Universal $100 \mathrm{~V}_{\mathrm{ac}}$ to $240 \mathrm{~V}_{\mathrm{ac}} \pm 10 \%$ <br> - AC line frequency of 45 to $66 \mathrm{~Hz} ; 360$ to 440 Hz for $100 / 120 \mathrm{~V}$ operation |
| :---: | :---: |
| Power consumption | 150 VA maximum |
| Current input fuse | 3.15 A, 500 V FF fuse (on front panel) |
| Display | Highly visible vacuum-fluorescent display (VFD) |
| Operating environment | - Operating temperature from 0 to $+55^{\circ} \mathrm{C}$ <br> - Relative humidity up to $80 \%$ at $40^{\circ} \mathrm{C}$ RH (non-condensing) <br> - Altitude up to 2000 meters <br> - Pollution degree 2 <br> - For indoor use only |
| Storage compliance | -40 to $70{ }^{\circ} \mathrm{C}$ |
| Safety compliance | - IEC 61010-1:2001/EN 61010-1:2001 (2nd Edition) <br> - Canada: CAN/CSA-C22.2 No. 61010-1-04 <br> - USA: ANSI/UL 61010-1:2004 |
| EMC compliance | - IEC 61326-1:2005/EN61326-1:2006 <br> - CISPR11:2003/EN55011:2007, Group 1 Class A <br> - Canada: ICES/NMB-001:Issue 4, June 2006 <br> - Australia/New Zealand: AS/NZS CISPR 11:2004 |
| Shock and vibration | Tested to IEC/EN 60068-2 |
| Remote interface | - GPIB IEEE-488 compatible <br> - Full Speed USB 2.0 (Standard-A to Type B) <br> - USB-TMC 488.2 Class device compatible <br> - USB-CDC |
| Measurement category | - CAT II 300 V <br> - CAT I $1000 \mathrm{~V}_{\mathrm{dc}}{ }^{\prime} 750 \mathrm{~V}_{\mathrm{ac}} \mathrm{rms}$ <br> - $2500 \mathrm{~V}_{\mathrm{pk}}$ transient over-voltages |
| Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) | - $226 \times 105 \times 334 \mathrm{~mm}$ (with rubber bumpers) <br> - $215 \times 87 \times 312 \mathrm{~mm}$ (without rubber bumpers) |
| Weight | - 3.77 kg approximate (with rubber bumpers) <br> - 3.54 kg approximate (without rubber bumpers) |

## Ordering information

Standard shipped items

- Quick Start Guide
- Product Reference CD
- Agilent IO Library Suite
- Certificate of Calibration
- U8201A Combo Test Lead Kit
- USB 2.0 High-Speed Type-A to Type-B cable
- AC power cord


## Warranty options

- R-51B-001-5C Extended warranty from three years to five years

Optional accessories


U8201A Combo Test Lead Kit


34133A Precision Electronic Test Leads (for DMM function)


11059A Kelvin Probe Set and 11062A Kelvin Clip Set (for DMM function)


34190A Rack Mount Kit


34330A Current Shunt (30 A) (for DMM function)

E3600A-100 Test Lead Kit (for DC power supply function)


U8202A Electronic Test Lead Kit (for DMM function)


34136A 40 kV high-voltage probe (for DMM function)


## I/O connectivity options

For control via GPIB interface

- 82350B/82351A PCI/PCle high-performance GPIB interface card
- 82357B USB/GPIB converter
- E5810A LAN/GPIB gateway
- 10833D/A/B/C/F/G GPIB cables
- 10834A GPIB-to-GPIB adapter

For control via USB interface

- E5813A networked 5-port USB hub

www.agilent.com<br>www.agilent.com/find/dmm-power


www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

## Agilent Channel Partners

www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

## Agilent Solution Partners

www.agilent.com/find/solutionpartners
Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

## (3) Three-Year Warranty WARRANTY

www.agilent.com/find/ThreeYearWarranty
Agilent's combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience.


Agilent Advantage Services
www.agilent.com/find/AdvantageServices
Accurate measurements throughout the life of your instruments.

www.agilent.com/quality

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

| Canada | (877) 8944414 |
| :--- | :--- |
| Brazil | (11) 41973600 |
| Mexico | 018005064800 |
| United States | $(800) 8294444$ |

Asia Pacific

| Australia | 1800629485 |
| :--- | :--- |
| China | 8008100189 |
| Hong Kong | 800938693 |
| India | 1800112929 |
| Japan | $0120(421) 345$ |
| Korea | 0807690800 |
| Malaysia | 1800888848 |
| Singapore | 18003758100 |
| Taiwan | 0800047866 |
| Other AP Countries | $(65) 3758100$ |

Europe \& Middle East

| Belgium | $32(0) 24049340$ |
| :--- | :--- |
| Denmark | 4545801215 |
| Finland | $358(0) 108552100$ |
| France | $0825010700^{*}$ |
|  | ${ }^{*} 0.125 € /$ minute |
| Germany | $49(0) 70314646333$ |
| Ireland | 1890924204 |
| Israel | $972-3-9288-504 / 544$ |
| Italy | 390292608484 |
| Netherlands | $31(0) 205472111$ |
| Spain | $34(91) 6313300$ |
| Sweden | $0200-882255$ |
| United Kingdom | $44(0) 1189276201$ |

For other unlisted countries: www.agilent.com/find/contactus (BP-3-1-13)

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2013 Published in USA, August 17, 2013 5991-2849EN

## Agilent Technologies

